8926 measured reflections

 $R_{\rm int} = 0.038$

1431 independent reflections

1308 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-Phenylcyclohexanecarboxamide

Bin Dong,^a* Yu Zhang^b and Dong-Yu Wang^c

^aAffiliated Hospital of Hebei University, Baoding 071000, People's Republic of China, ^bHebei Xushui County Health Bureau, Baoding 071000, People's Republic of China, and College of Electronic and Information Engineering, Hebei University, Baoding 071000, People's Republic of China Correspondence e-mail: dbin2000@hotmail.com

Received 29 September 2010; accepted 30 September 2010

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.080; data-to-parameter ratio = 10.1.

In the title compound, C₁₃H₁₇NO, the cyclohexane ring adopts a chair conformation and the amide C(=O)-N moiety is almost coplanar with the phenyl ring [C-N-C-O = 4.1 (2)°]. In the crystal, molecules are linked to form a C(4)infinite [001] chain via N-H···O hydrogen bonds, unlike the cyclic motif seen in related structures.

Related literature

For hydrogen-bonding motifs in amides, see: Taylor et al. (1984); Leiserowitz & Schmidt (1969). For related structures, see: Lemmerer & Michael (2008).

Experimental

Crystal data

C13H17NO $M_r = 203.28$ Orthorhombic, Pca21 a = 9.943 (2) Å b = 11.839 (2) Å c = 9.6514 (19) Å

V = 1136.1 (4) Å³ Z = 4Mo Ka radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 113 K0.24 \times 0.18 \times 0.10 mm

Data collection

```
Rigaku Saturn CCD diffractometer
Absorption correction: multi-scan
  (CrystalClear; Rigaku/MSC,
  2005)
  T_{\min} = 0.982, T_{\max} = 0.993
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture of
$wR(F^2) = 0.080$	independent and constrained
S = 1.09	refinement
1431 reflections	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
141 parameters	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$
1 restraint	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1^i$	0.85 (3)	1.98 (3)	2.8145 (19)	171.7 (18)
	. 1 1			

Symmetry code: (i) $-x + \frac{1}{2}, y, z - \frac{1}{2}$.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This paper was supported by the Hebei Province Health Bureau (grant No. 20090176), the Ministry of Science and Technology of the People's Republic of China International Cooperation Project (grant No. 2008DFR10530) and the Science and Technology Support Program of Hebei Province Science and Technology Department (grant No. 08243531D).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5665).

References

Leiserowitz, L. & Schmidt, G. M. (1969). J. Chem. Soc. A, pp. 2372-2382. Lemmerer, A. & Michael, J. P. (2008). CrystEngComm, 10, 95-102. Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Taylor, R., Kennard, O. & Versichel, W. (1984). Acta Cryst. B40, 280-288. supplementary materials

Acta Cryst. (2010). E66, o2763 [doi:10.1107/S1600536810039267]

N-Phenylcyclohexanecarboxamide

B. Dong, Y. Zhang and D.-Y. Wang

Comment

The amides are an important H-bonding supramolecular synthon (Taylor *et al.*, 1984; Leiserowitz & Schmidt, 1969), and we herein report the crystal structure of the title compound (I).

In the crystal structure of the title compound, Fig. 1, the cyclohexane group adopts a chair conformation [torsion angles: C1/C2/C3/C4 54.67 (19)°, C2/C3/C4/C5 - 55.3 (2)°]. The amide C(=O)—N moiety is almost coplanar with the phenyl ring [torsion angles: C8/N1/C7/O1 4.1 (2)°, C8/N1/C7/C6 - 175.38 (13)°]. Molecules are linked to form an infinite chain down the *c* axis *via* N—H…O hydrogen bonds (Fig. 2 and Table 1), being different from the reported secondary graph set $R_6^4(16)$ in 1-phenylcylcopentane- carboxamide and 1-(2-bromphenyl)cyclopentanecarboxamide (Lemmerer & Michael, 2008).

Experimental

The title compound was prepared from cyclohexoyl chloride and aniline. Colourless blocks of (I) were grown out *via* recrystallization from ethanol.

Refinement

Anomalous dispersion was negligible and Friedel pairs were merged before refinement. The amide H atom was located in a difference Fourier map and refined freely. The other H atoms were positioned geometrically and allowed to ride on their parent atoms [C—H = 1.00 (aliphic CH), 0.95(aromatic CH) or 0.99Å (CH₂), and $U_{iso}(H) = 1.2 U_{eq}(C)$]

Figures

Fig. 1. The molecule of (I) showing displacement ellipsoids drawn at the 50% probability level.

Fig. 2. The infinite chain formed *via* N—H···O down the *c* axis.

N-Phenylcyclohexanecarboxamide

Crystal data C₁₃H₁₇NO

F(000) = 440

supplementary materials

$M_r = 203.28$
Orthorhombic, <i>Pca</i> 2 ₁
Hall symbol: P 2c -2ac
<i>a</i> = 9.943 (2) Å
<i>b</i> = 11.839 (2) Å
<i>c</i> = 9.6514 (19) Å
$V = 1136.1 (4) \text{ Å}^3$
Z = 4

11 D

Data collection	
Rigaku Saturn CCD diffractometer	1431 independent reflections
Radiation source: rotating anode	1308 reflections with $I > 2\sigma(I)$
multilayer	$R_{\rm int} = 0.038$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{\text{max}} = 27.9^\circ, \ \theta_{\text{min}} = 3.4^\circ$
ω and ϕ scans	$h = -13 \rightarrow 11$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku/MSC, 2005)	$k = -15 \rightarrow 13$
$T_{\min} = 0.982, \ T_{\max} = 0.993$	$l = -12 \rightarrow 12$
8926 measured reflections	

 $D_{\rm x} = 1.188 \ {\rm Mg \ m}^{-3}$

 $\theta = 2.9 - 27.8^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 113 KBlock, colorless $0.24 \times 0.18 \times 0.10 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3664 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.080$	$w = 1/[\sigma^2(F_o^2) + (0.0508P)^2 + 0.0154P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\rm max} = 0.001$
1431 reflections	$\Delta \rho_{max} = 0.14 \text{ e} \text{ Å}^{-3}$
141 parameters	$\Delta \rho_{\rm min} = -0.12 \ e \ \text{\AA}^{-3}$
1 restraint	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}
Determine the first the start of the start of the start start of the start start of the start st	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.174 (16) methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*- factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.22562 (12)	0.24856 (10)	0.38081 (13)	0.0311 (3)
N1	0.17317 (13)	0.25866 (10)	0.15287 (15)	0.0201 (3)
C1	0.48835 (17)	0.24779 (12)	0.16381 (19)	0.0254 (4)
H1A	0.4512	0.2918	0.0854	0.031*
H1B	0.5133	0.3014	0.2382	0.031*
C2	0.61342 (18)	0.18387 (14)	0.11590 (18)	0.0282 (4)
H2A	0.5904	0.1367	0.0346	0.034*
H2B	0.6832	0.2387	0.0871	0.034*
C3	0.66924 (17)	0.10871 (15)	0.2307 (2)	0.0344 (4)
H3A	0.7032	0.1566	0.3071	0.041*
H3B	0.7457	0.0642	0.1941	0.041*
C4	0.56207 (18)	0.02845 (14)	0.2867 (2)	0.0334 (4)
H4A	0.5996	-0.0153	0.3651	0.040*
H4B	0.5356	-0.0255	0.2133	0.040*
C5	0.43777 (16)	0.09411 (13)	0.33568 (18)	0.0259 (4)
H5A	0.3681	0.0404	0.3679	0.031*
H5B	0.4625	0.1434	0.4146	0.031*
C6	0.38120 (15)	0.16622 (12)	0.21778 (17)	0.0218 (3)
H6	0.3575	0.1140	0.1401	0.026*
C7	0.25333 (16)	0.22777 (12)	0.25968 (16)	0.0207 (3)
C8	0.05357 (14)	0.32340 (12)	0.16232 (17)	0.0193 (3)
C9	-0.03152 (16)	0.31722 (13)	0.27635 (18)	0.0253 (4)
H9	-0.0110	0.2681	0.3513	0.030*
C10	-0.14675 (18)	0.38349 (15)	0.2797 (2)	0.0325 (4)
H10	-0.2045	0.3798	0.3580	0.039*
C11	-0.17880 (18)	0.45468 (14)	0.1711 (2)	0.0340 (4)
H11	-0.2574	0.5002	0.1750	0.041*
C12	-0.09518 (18)	0.45894 (13)	0.0565 (2)	0.0300 (4)
H12	-0.1174	0.5067	-0.0193	0.036*
C13	0.02102 (16)	0.39388 (13)	0.05141 (18)	0.0240 (3)
H13	0.0782	0.3974	-0.0274	0.029*
H1	0.204 (2)	0.2485 (15)	0.072 (3)	0.035 (6)*

Fractional atomic coordinates and isotropic or equivalent isotropic displaceme	nt parameters ($Å^2$)
--	-------------------------

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0268 (6)	0.0522 (7)	0.0143 (6)	0.0088 (5)	-0.0021 (5)	-0.0028 (5)
N1	0.0190 (7)	0.0273 (6)	0.0138 (6)	0.0021 (5)	0.0007 (5)	-0.0007 (5)
C1	0.0241 (8)	0.0280 (8)	0.0241 (8)	0.0058 (6)	0.0028 (7)	0.0048 (7)
C2	0.0238 (9)	0.0310 (8)	0.0299 (9)	0.0038 (6)	0.0055 (7)	0.0028 (7)
C3	0.0240 (9)	0.0374 (9)	0.0418 (11)	0.0083 (7)	0.0003 (8)	0.0062 (8)
C4	0.0290 (9)	0.0291 (8)	0.0420 (10)	0.0068 (7)	-0.0009 (8)	0.0094 (8)

supplementary materials

C5	0.0234 (8)	0.0268 (7)	0.0275 (8)	0.0017 (6)	-0.0010 (7)	0.0065 (7)	
C6	0.0189 (7)	0.0242 (7)	0.0222 (7)	0.0028 (6)	-0.0003 (6)	0.0005 (6)	
C7	0.0194 (7)	0.0238 (7)	0.0188 (7)	-0.0006 (6)	-0.0015 (6)	-0.0007 (6)	
C8	0.0184 (7)	0.0198 (6)	0.0196 (7)	-0.0009 (5)	-0.0043 (6)	-0.0032 (6)	
C9	0.0230 (8)	0.0303 (8)	0.0226 (8)	0.0025 (6)	-0.0014 (6)	-0.0008 (7)	
C10	0.0226 (8)	0.0405 (9)	0.0345 (9)	0.0044 (7)	0.0008 (7)	-0.0063 (8)	
C11	0.0249 (9)	0.0279 (8)	0.0493 (11)	0.0073 (6)	-0.0079 (8)	-0.0078 (8)	
C12	0.0317 (10)	0.0219 (8)	0.0366 (9)	-0.0007 (6)	-0.0142 (8)	0.0017 (7)	
C13	0.0232 (8)	0.0252 (7)	0.0236 (8)	-0.0040 (6)	-0.0063 (7)	0.0014 (7)	
Geometric paran	neters (Å, °)						
01 - C7		1 226 (2)	C5—C6	á	1 53((2)	
N1		1.220(2) 1.353(2)	C5—H	54	0.990)0	
N1-C8		1.555(2)	C5—H	5R	0.99(00	
N1H1		0.85(3)	C6-C	7	1.52	(2)	
C1 - C2		1.527(2)	C6-H	5	1.020	(2)	
C1 - C6		1.527(2) 1.529(2)))	1.000) (2)	
C1-H1A		0.9900	C8-C1	3	1.304	5(2)	
CI_HIR		0.9900		0	1.39.	(2)	
$C^2 - C^3$		1.526(2)	С9—Н))	0.95	1.389 (2)	
C2 H2A		0.0000	C10 (, 11	1.383	0.9300	
$C_2 = H_2 R$		0.9900	C10 E	110	0.95	0.9500	
C_2 — H_2D		1.527(2)	C10—I	110	1 294	1 385 (2)	
C3 H3A		0.0000	C11 F	J12 J11	0.95	0.9500	
C3—H3A		0.9900	C11—F	111	1 390 (2)		
С3—пзв		0.9900	C12—C	C12C13		$\mathcal{F}(2)$	
C4 - C3		1.555 (2)	C12—1112 C12—1112		0.930	0	
С4—п4А		0.9900	C15—r	115	0.930	0	
C4—I14D		0.9900					
C7—N1—C8		126.23 (15)	C6—C5	5—Н5В	109.6	5	
C7—N1—H1		116.4 (15)	C4—C3	5—Н5В	109.6		
C8—N1—H1		116.4 (14)	H5A—	.5A—C5—H5B 108.1			
C2—C1—C6		110.94 (12)	C/—C6	—CI	111.7	/5 (12)	
C2—C1—H1A		109.5	C7—C6	6—C5	112.1	16 (13)	
C6—C1—H1A		109.5	C1—Ce	5—C5	110.4	46 (13)	
C2—C1—H1B		109.5	C7—C6	Б—Н6	107.4	1	
C6—C1—H1B		109.5	C1—Ce	Б—Н6	107.4	1	
H1A—C1—H1B		108.0	C5—C6	Б—Н6	107.4	1	
C3—C2—C1		111.43 (14)	01—C	7—N1	122.0	67 (15)	
C3—C2—H2A		109.3	01—C	7—С6	122.5	53 (14)	
C1—C2—H2A		109.3	N1—C	7—С6	114.8	30 (14)	
C3—C2—H2B		109.3	C9—C8	3—C13	119.8	35 (14)	
C1—C2—H2B		109.3	C9—C8	3—N1	122.2	21 (14)	
H2A—C2—H2B		108.0	C13—C	C8—N1	117.9	94 (14)	
C2—C3—C4		111.49 (14)	C10—C	С9—С8	119.4	40 (15)	
С2—С3—НЗА		109.3	C10—C	С9—Н9	120.3	3	
С4—С3—Н3А		109.3	C8—C9	9—Н9	120.3	3	
С2—С3—Н3В		109.3	C11—C	С10—С9	121.1	10 (18)	
С4—С3—Н3В		109.3	C11—C	С10—Н10	119.4	1	

НЗА—СЗ—НЗВ	108.0	С9—С10—Н10	119.4
C3—C4—C5	110.85 (13)	C10-C11-C12	119.33 (16)
С3—С4—Н4А	109.5	C10-C11-H11	120.3
С5—С4—Н4А	109.5	C12—C11—H11	120.3
C3—C4—H4B	109.5	C11—C12—C13	120.47 (17)
C5—C4—H4B	109.5	C11—C12—H12	119.8
H4A—C4—H4B	108.1	C13—C12—H12	119.8
C6—C5—C4	110.48 (14)	C12—C13—C8	119.83 (16)
С6—С5—Н5А	109.6	С12—С13—Н13	120.1
С4—С5—Н5А	109.6	С8—С13—Н13	120.1
C6—C1—C2—C3	-55.5 (2)	C1—C6—C7—N1	78.01 (17)
C1—C2—C3—C4	54.7 (2)	C5-C6-C7-N1	-157.32 (13)
C2—C3—C4—C5	-55.3 (2)	C7—N1—C8—C9	-32.8 (2)
C3—C4—C5—C6	56.9 (2)	C7—N1—C8—C13	148.20 (15)
C2-C1-C6-C7	-177.32 (14)	C13—C8—C9—C10	-1.4 (2)
C2—C1—C6—C5	57.07 (19)	N1-C8-C9-C10	179.54 (15)
C4—C5—C6—C7	176.87 (13)	C8—C9—C10—C11	0.6 (2)
C4—C5—C6—C1	-57.75 (17)	C9-C10-C11-C12	0.7 (3)
C8—N1—C7—O1	4.1 (2)	C10-C11-C12-C13	-1.1 (2)
C8—N1—C7—C6	-175.38 (13)	C11—C12—C13—C8	0.2 (2)
C1—C6—C7—O1	-101.43 (19)	C9—C8—C13—C12	1.0 (2)
C5—C6—C7—O1	23.2 (2)	N1—C8—C13—C12	-179.90 (14)
Hydrogen-bond geometry (Å, °)			

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1···O1 ⁱ	0.85 (3)	1.98 (3)	2.8145 (19)	171.7 (18)
Symmetry codes: (i) $-x+1/2$, <i>y</i> , $z-1/2$.				

sup-5

